

Integrating Knowledge Graphs and Large Language Models for Advancing Scientific Research

Qiang Zhang, Jiaoyan Chen, Zaiqiao Meng

Tutorial at Learning on Graph Conference (LoG) 26th November, 2024

About Me

Dr. Jiaoyan Chen

☆ <u>https://chenjiaoyan.github.io/</u>
⋈ jiaoyan.chen@Manchester.ac.uk

- UK Lecturer (Assistant Professor) at the Department of Computer Science, University of Manchester (2022.11 – now)
- Senior researcher at the Department of Computer Science, University of Oxford (part-time: 2022.12 – now; full time: 2017.11-2022.10)
- Ph.D. degree in Computer Science from Zhejiang University (2016)

- Knowledge Graph & Ontology
- Knowledge Representation
- Semantic Web & Semantic Techniques
 - Integration with Machine Learning & Language Models
 - Neural-symbolic AI

Why combine KGs and LLMs?

Knowledge Graphs (KGs)

Cons:

- Implicit Knowledge
- Hallucination
- Indecisiveness
- Black-box
- Lacking Domainspecific/New Knowledge

Pros:

- Structural Knowledge
- Accuracy
- Decisiveness
- Interpretability
- Domain-specific Knowledge
- Evolving Knowledge

Pros:

- General Knowledge
- Language Processing
- Generalizability

Large Language Models (LLMs)

Cons:

- Incompleteness
- Lacking Language
- Understanding
- Unseen Facts

Pan, Shirui, et al. "Unifying large language models and knowledge graphs: A roadmap." *IEEE Transactions on Knowledge and Data Engineering* (2024).

More similar perspectives recently, e.g.,

Pan, Jeff, et al. "Large Language Models and Knowledge Graphs: Opportunities and Challenges." Transactions on Graph Data and Knowledge (2023).

Why combine KGs and LLMs?

4

The University of Manchester

Part I: Knowledge Graphs for Science

Jiaoyan Chen

Tutorial at Learning on Graph Conference (LoG) 26th November, 2024

Outline

1 KG Definitions and Core Concepts

Ecotoxicological Effect Prediction: A Simple Case

KG for Life Science: Review & Challenges

The Knowledge Graph

Manchester Baby

Computer :

- The Knowledge Graph is a knowledge base used by Google and its services to enhance its search engine's results with knowledge gathered from a variety of sources.
 - Proposed around 2012
 - Knowledge ≈ Instances + Facts
 - KG ≈ Linked Structured Data (can be regarded as a multi-relational graph)

The Manchester Baby, also called the Small-Scale Experimental Machine, was the first electronic storedprogram computer. It was built at the University of Manchester by Frederic C. Williams, Tom Kilburn, and Geoff Tootill, and ran its first program on 21 June 1948. Wikipedia >

Date introduced: June 21, 1948

Also known as: Small-Scale Experimental Machine

Developer: Frederic Calland Williams; Tom Kilburn; Geoff Tootill

Memory: 1 kilobit (1,024 bits)

Successor: Manchester Mark 1

A Knowledge Representation Perspective

• **RDF** (Resource Description Framework)

- Triple: <Subject, Predicate, Object>
- Representing facts:
 - E.g., <Manchester Baby, hasDeveloper, Tom Kilburn>

A Knowledge Representation Perspective

• **RDF** (Resource Description Framework)

- Triple: <Subject, Predicate, Object>
- Representing facts:
 - E.g., <Manchester Baby, hasDeveloper, Tom Kilburn>

RDF Schema

- Meta data (schema) of instances and facts
 - E.g., class, property domain and range

A Knowledge Representation Perspective

Web Ontology Language (OWL) Taxonomies and vocabularies E.g., FoodOn, SNOMED CT, GO, DOID obo:FOODON 00001015 ("plant food product") obo:RO_0001000 (derives Constraints and logical from), some obo:FOODON 00001635 obo:FOODON 03302389 obo:NCBITaxon_3847 relationships (> schema) ("soybean beverage") ("been food product") ("Glycine max")) Underpinned by **Description Logic** (□, ∐,∃,∀,¬) obo:FOODON 00002266 obo:FOODON 03305289 ("soybean food product") ("soybean milk") E.g., 'food material' \equiv 'environmental material' and ('has role' some 'food') rdfs:subClassOf obo:FOODON 03305013 rdfs:subClassOf (some intermediate classes have been omitted) E.g., the cardinality of "hasParent" is 2 ("gluten soya bread") prefix of FoodOn obo:

A segment of the food ontology FoodOn

What is a Knowledge Graph?

RDF facts relational graph as Google

RDF facts + schema

(OWL) Ontology graph + reasoning agent logic-equipped KG

Knowledge Graph Advantages (w.r.t. Database)

- ✓ Intuitive (e.g., no "foreign keys")
- ✓ Data + schema (ontology)
- ✓ URI not strings
- ✓ Flexible & extensible
- ✓ Rule language
 - Location + capital \rightarrow location
 - Parent + brother \rightarrow uncle
- ✓ Other kinds of query
 - Navigation
 - Similarity & Locality

(From Ian Horrocks)

• Crowdsourcing (Encyclopedias) & Domain Experts

- DBpedia, Wikidata, Zhishi.me (中文), LinkedGeoData, GeoName
- Domain ontologies like GO, SNOMED CT, FoodON

• The Web, Natural Language Text

• Open Information Extraction, Web Mining

NLP and ML techniques: NER, Categorization, Relations extraction, Entity linking, etc.

Semi-structured and structured data

• DBs, Web Tables, Excel Sheets, CSV files, etc.

Table to KG transformation (by e.g., rules)

Table to KG matching (cell to entity, column type to class, inter-

column relation to property, e.g., Sebastian Ferrari = dbp:Ferrari)

Existing KG on F1

• Data integration (alignment, modulization, canonicalization, etc.)

engineering with deep learning." Semantic Web Journal (2024).

Outline

KG Definitions and Core Concepts

1

Ecotoxicological Effect Assessment: A Simple Case

KG for Life Science: Review and Challenges

Ecotoxicological Effect Assessment

Norwegian Institute for Water Research

Simplified pipeline used in Norwegian Institute for Water Research Chemical effect data gathered from laboratory experiments

Ecotoxicological Effect Assessment

[Myklebust et al. 2022]: use **KG and its embeddings**, focus on **mortality**, i.e., lethal concentration to 50% of test population (LC50) measured at 48 hours

Myklebust, Erik B., et al. "Prediction of adverse biological effects of chemicals using knowledge graph embeddings." *Semantic Web* 13.3 (2022): 299-338.

How to Construct a Knowledge Graph?

- Data sources
 - Biological effects: ECOTOXicology database (~1M results, ~12K compounds, ~13K species, ~0.6% coverage of chemical-species pair coverage)
 - Biological: NCBI Taxonomy, Encyclopedia of Life (EOL; for species traits)
 - Chemical: PubChem, ChEMBL, MeSH
- Data integration
 - Wikidata mappings of species and chemicals
 - Ontology alignment tools
 - LogMap, AML: Lexical matching & index, reasoning
 - Levenshtein distance
 - Alternative: BERTMap (<u>https://github.com/KRR-Oxford/DeepOnto</u>): BERT fine-tuning, lexical matching & index, reasoning-based repair

TERA: Toxicological Effect and Risk Assessment KG

TERA: Toxicological Effect and Risk Assessment KG

	subject	predicate	object				
		Effects sub-KG					
	et:test/1147366	et:compound	et:chemical/134623				
	et:test/1147366	et:species	et:taxon/1				
	et:test/1147366	et:hasResult	et:result/102570				
	et:result/102570	et:endpoint	et:endpoint/LC50				
	et:result/102570	et:effect	et:effect/Mortality				
Examples of	Entity Mappings						
RDF Triples	et:taxon/1	owl:sameAs	ncbi:taxon/90988				
	ncbi:taxon/90988	owl:sameAs	wd:Q2700010				
	wd:Q2700010	owl:sameAs	eol:211492				
	Taxonomy sub-KG						
	ncbi:taxon/90988	rdf:type	ncbi:taxon/51137 ²				
	ncbi:taxon/90988	rdf:type	ncbi:division/10				
	ncbi:taxon/90988	ncbi:scientific_name	"Pimephales promelas"				
	ncbi:taxon/90988	ncbi:rank	ncbi:species				
	ncbi:taxon/51137	rdfs:subClassOf	ncbi:taxon/7953 ³				
	Chemical sub-KG						
	mesh:D003671	mesh:broaderDescriptor	mesh:D001549 ⁵				
	mesh:D003671	mesh:pharmacologicalAction	mesh:D007302 ⁶				
	chembl_m:CHEMBL1453317	chembl:hasTarget	chembl_t:CHEMBL1907594 ⁷				
	chembl_t:CHEMBL1907594	chembl:relSubsetOf	chembl_t:CHEMBL3137273 ⁸				
	0						

TERA: Toxicological Effect and Risk Assessment KG

Example of an ECOTOX test and related triples

Link Prediction with TERA

Baselines: Simple (left) and complex (right) **MLP**s, with the input of **pretrained KG embeddings** of the species and chemical

Link Prediction with TERA

Method: Simultaneously train the KG embeddings and the MLP

 $L = \alpha_C L_{KGE_C} + \alpha_S L_{KGE_S} + \alpha_{MLP} L_{MLP}$

Link Prediction with TERA

- Tested TransE, HolE, DistMult, HAKE, ConvE, ConvKB, RotatE, pRotatE, and three different sampling strategies
- Result summary:

in the majority of the settings, Sensitivity (TP/TP+FN) > 0.9, Specificity (TN/FP+TN) > 0.75)

Chemical	Species	$\log(\kappa)$	Predicted	Lethal	Classification
D001556 (hexachlorocyclohexane)	59899 (walking catfish)	-3.4	0.97	1 (yes)	TP
C037925 (benthiocarb)	7965 (sea urchins)	0.9	0.2	0 (no)	TN
D026023 (permethrin)	378420 (bivalves)	0.7	0.96	1 (yes)	TP
D011189 (potassium chloride)	938113 (megacyclops viridis)	6.7	0.27	1 (yes)	FN
C427526 (carfentrazone-ethyl)	208866 (eudicots)	-0.9	0.82	0 (no)	FP
D010278 (parathion)	201691 (green sunfish)	-0.9	0.86	0 (no)	FP

Example predictions by the **simultaneously training method** with the best combination of **HolE-DistMult**

Discussion from a KG Perspective

- KG construction with more data sources?
 - Literatures & reports
 - Data of specific scientific/experimental systems (e.g., in AnIML)
 - Multi-modal data
- Link prediction
 - Accuracy & explanation
 - Multi-modal semantic embedding
 - + symbolic reasoning

Outline

KG Definitions and Core Concepts

1

Ecotoxicological Effect Assessment: A Simple Case

KG for Life Science: Review and Challenges

KG for Life Science

Knowledge Graph Construction and Management (Sect. 3)

> Life Science Knowledge Discovery (Sect. 4)

Alignment for Knowledge Validation

- **Knowledge Integration**
- **Repositories of Ontologies and Mappings**
- **Ontology Extension**
- **Instance Matching**

Therapeutics and Drug Discovery

- **Protein Function Prediction**
- Predictions for Healthcare

- **Explainable AI for Healthcare Practice**
- Explainable AI for Knowledge Discovery
- Explainable AI for KG Construction

KG in Life Sciences (Sect. 2)

- Schema-less KGs: Facts in RDF triples *
- Schema-based KGs: RDFS, OWL, SHACL, etc. *
- Simple ontologies: Taxonomies *
- **Expressive OWL ontologies** **

Challenges for Life Science KGs (Sect. 6)

- * Scalability
- **Evolution & Quality Assurance** **
- Heterogeneity: Multi-domain & Multi-** modality
- Human Interaction & Explainability *
- Personalized & Customized KGs *
- **Distributed KGs** **
- Representation Learning: Symbolic & Sub-* symbolic Integration

Chen, Jiaoyan, et al. "Knowledge Graphs for the Life Sciences: Recent Developments, Challenges and Opportunities." Transactions On Graph Data and Knowledge (2024). (New, open access journal in the KG community) 30

Knowledge Graph for Explainable AI (Sect. 5)

Part II: Scientific Large Language Models

Qiang Zhang qiang.zhang.cs@zju.edu.cn

Tutorial at Learning on Graph Conference (LoG) 26th November, 2024

About Me

Dr. Qiang Zhang

☆ https://person.zju.edu.cn/zhangqiang
 ☆ qiang.zhang.cs@zju.edu.cn
 ☆ https://github.com/HICAI-ZJU
 ☆ https://scimind.ai/resource/

- I'm an Assistant Professor under the Hundred Talents Program at <u>Zhejiang University</u>, since 2021.9.
- Before that, I was a postdoctoral research fellow in the <u>Centre for</u> <u>Artificial Intelligence</u> in <u>University College London (UCL)</u> in UK. I studied for the Ph.D. degree at UCL from 2017-2020.
- Prior to that, I obtained M.Sc. from Chinese Academy of Sciences in 2017 and B.Sc. from Shandong University in 2014.
 - ✤ AI theory: data-efficient machine learning, foundation model.
 - Applications: natural language processing, knowledge graphs, **AI for Science**.
 - Publications: nature portfolio * 5, top-tier conference papers * 52, patents *4, Google Scholar citations: 5000+.
 - Research projects: national/provincial funding * 5, corporate sponsorship * 4, in total 8M+ RMB.

Outline

Outline

LLMs Revolutionize AGI

Planing Prediction facebook/ detr-resnet-101 6 II Model III Task Execution A text can describe the given image: a herd of Selection airaffes and zebras arazina in a fields. In addition, there are five detected objects as giraffe with score 99.9%, zebra with score 99.7%, zebra nlpconnet/ with 99.9%, giraffe with score 97.1% and zebra with Prediction score 99.8%. I have generated bounding boxes as above vit-gpt2-image-captionin image. I performed image classification, object **IV Response** detection and image captain on this image. Combining Generation the predictions of 1 and 😕 models. I get the results for you.

HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face, https://arxiv.org/pdf/2303.17580, 2023. *It was the night: *It wa

Sora, <u>https://openai.com/index/sora/</u> OpenAI, 2024

AnyGPT: Unified Multimodal LLM with Discrete Sequence Modeling, <u>https://arxiv.org/abs/2402.12226</u>, 2024

LLMs Limited to Human Language

General

LLMs

What can GPTs do?

- 1. Chatbots talking to historical figures
- 2. Code generation based on text descriptions
- 3. Answer medical questions
- 4. Stylistic transfer of text
- 5. Write creative novels

6.

....

- \mathbb{H}_{2}
- **Protein**: MOTS-c
- Gene: MT-RNR1
- **Organism**: Homo sapiens
- Sequences:
 MRWOEMGYIFYPRKLR

Question: What is the solubility of this protein?

"The limits of my language mean the limits of my world." --Ludwig Wittgenstein, 1921

Scientific Language Understanding

Gene

Protein

Scientific Language Understanding

LLMs for Scientific Language?

Fundamental Question: Does the Distributional Semantics Hypothesis Hold?

Outline

Scope of Scientific LLM

Outline

Text-Sci-LLM: Models & Datasets

- Biology + Chemistry + Comprehensive LLM
 - Architecture: **BERT**-based (BioBERT, ChemBERT), **GPT**-based (BioGPT, PharmLLM) and **GLM**-based (SciGLM)
 - Corpus: Initially trained on broad corpora like Wikipedia and papers and then fine-tuned on specific tasks

Pub Med PMC			Table 1. S	ummary of Text-	Sci-LLMs		
	Domain	Model	Time	#Parameters	Base model	Pretraining dataset	Open- source
arXiv ChemRxiv®		BioELMo [150] BioBERT [177] BlueBERT [263] BioMonstrue [200]	2019.04 2019.05 2019.07	- 117M 117M 245M 1 2B	ELMo BERT BERT BERT	PubMed PubMed, PMC PubMed PubMed PMC	\ \ \ \
DIORXIV THE PREPRINT SERVER FOR BIOLOGY	Biology	PubMedBERT [113] BioM-BERT[6] BioLinkBERT[386] BioGPT [219] BioMedGPT-LM [221]	2020.10 2020.10 2021.06 2022.03 2023.03 2023.08	545M-1.2B 117M 235M 110M, 340M 347M 7B	BERT BERT BERT GPT LLaMA	PubMed PubMed, PMC PubMed PubMed PMC, arXiv, WIPO	> X \ \ \ \ \
ACS		BioinspiredLLM [222] BioMistral [172] ChemBERT [115]	2024.02 2024.02 2021.06	13B 7B 120M	Llama-2 Mistral BERT	Biological article PMC Chemical journals	<u> </u>
Chemistry for Life®	Chemistry	MatSciBERT [118] MaterialsBERT [298] ChemLLM [397] ChemDFM [419] PharmGPT [48]	2021.09 2022.09 2024.02 2024.01 2024.02	117M - 7B 13B 13B, 70B	BERT BERT InternLM2 InternLM2 LLaMA	Elsevier journals Material journals ChemData and Multi-Corpus Chemical literature, textbooks Paper, report, book, etc.	~ ~ ~ ~ ~
中国化学会 SOCIETY ROYAL SOCIETY OF CHEMISTRY	Comprehensive	SciBERT [18] ScholarBERT [131] DARWIN-Base [367] SciGLM [367] Uni-SMART [367] INDUS [25]	2019.09 2023.05 2023.08 2024.03 2024.06 2023.08	117M 340M, 770M 7B 6B, 32B 7B 125M	BERT BERT LLaMA ChatGLM3 - RoBERTa	Semantic Scholar Wiki, Books, etc. SciQ, Web of Science SciInstruct Patents, news, literature, etc. wikipedia, PubMed, PMC, etc.	> > > > ×

Text-Sci-LLM: Encoder-only

BioBERT: A pre-trained biomedical language representation model for biomedical text mining, Bioinformatics, 2019

Text-Sci-LLM: Decoder-only

DARWIN Series: Domain Specific Large Language Models for Natural Science, https://arxiv.org/pdf/2308.13565, 2023

Text-Sci-LLM: Encoder-decoder

SciGLM: Training Scientific Language Models with Self-Reflective Instruction Annotation and Tuning, https://arxiv.org/pdf/2401.07950, 2024

Text-Sci-LLM: Evaluation

Table 2. Summary of the benchmarks for Text-Sci-LLMs

Dataset	Last updated	Subset	#Item	Domain	Туре	Capability	Language
MMLU [127]	2020.09	High-school-biology High-school-chemistry College-biology College-chemistry	344 227 162 110	Biology Chemistry Biology Chemistry	Multiple choice	Pre-college Pre-college College College	English
C-Eval [138]	2023.05	Mid-school-biology Mid-school-chemistry High-school-biology High-school-chemistry College-chemistry	218 210 199 196 253	Biology Chemistry Biology Chemistry Chemistry	Multiple choice	Pre-college Pre-college Pre-college Pre-college College	Chinese
AGIEval [424]	2023.04	Gaokao-biology Gaokao-chemistry	210 207	Biology Chemistry	Multiple choice	Pre-college	Chinese
ScienceQA [216]	2022.09	Natural-science-biology Natural-science-chemistry	4098 1194	Biology Chemistry	Multiple choice / QA	Pre-college	English
XieZhi [114]	2023.06	Science-biology Science-chemistry	2831 399	Biology Chemistry	Multiple choice	Mixed	Both
SciEval [313]	2023.08	Basic-biology Knowledge-biology Calculation-biology Research-biology Basic-chemistry Knowledge-chemistry Calculation-chemistry	2142 1369 299 995 2909 1700 3396	Biology Biology Biology Diology Chemistry Chemistry Chemistry	Multiple choice / QA	Mixed	English
GAOKAO-Bench [406]	2023.11	Biology Chemistry	266 133	Biology Chemistry	Multiple choice / QA	Mixed	Chinese
SciKnowEval [98]	2024.06	Biology Chemistry	27730 22250	Biology Chemistry	Multiple choice / QA / True or flase	Mixed	English
Bioinfo-Bench-QA [49] BLURB [113] PubMedQA [151] SciBench [345] ARC [64] SciQ [152] ChemData [397]	2023.10 2020.07 2019.09 2023.07 2018.03 2017.07 2024.02	-	150 648k 273.2k 272 7.78k 13.7k 727k	Biology Biology Biology Chemistry Natural Science Natural Science Chemistry	Multiple choice Multiple NLP tasks True or false QA Multiple choice Multiple choice QA	Post-college Mixed College College Pre-college Mixed Mixed	English

- Evaluation Benchmarks
 - **MMLU**: 57 subjects, including STEM humanities, social sciences
 - **C-Eval**: 13,948 multi-choice questions spanning 52 diverse disciplines
 - AGIEval: 20 qualification exams, e.g., Gaokao and American SAT, law school admission tests
 - ScienceQA: 21,208 multimodal multiplechoice questions, involving elementary and high school science curricula
 - Xiezhi: 249,587 multi-choice questions spanning 516 diverse disciplines from the elementary to graduate entrance tests
 - **SciEval**: 18,000 scientific questions across chemistry, physics, and biology
 - SciQ: 13,679 science exam questions on subjects like chemistry and biology
 - **SciBench**: 695 problems from textbooks, tailored for college-level problem-solving
 - SciAssess: 14,721 questions across 29 tasks in five domains, with paper memorization, comprehension, and analysis

Text-Sci-LLM: Evaluation

SciKnowEval

- L1: Studying Extensively (i.e., knowledge coverage): remember and understand concepts
- L2: Enquiring Earnestly (i.e., knowledge enquiry and exploration): deep enquiry and exploration
- L3: Thinking Profoundly (i.e., knowledge reflection and reasoning): reasoning and calculating
- L4: Discerning Clearly (i.e., knowledge discernment and safety assessment): make secure, ethical decisions
- L5: Practicing Assiduously (i.e., knowledge practice and application): apply knowledge in real-world

SciKnowEval: Evaluating Multi-level Scientific Knowledge of Large Language Models, https://arxiv.org/abs/2406.09098, 2024

Text-Sci-LLM: Evaluation

· · ·	Jan Barrow
891 GUNWE	

Domain	Ability	Task Name	Task Type	Data Source	Method	#Questions
	T 1	Biological Literature QA	MCQ	Literature Corpus	Ι	14,869
-		Protein Property Identification	MCQ	UniProtKB	III	1,500
		Drug-Drug Relation Extraction	RE	Bohrium	II	464
		Biomedical Judgment and Interpretation	T/F	PubMedQA	Π	904
		Compound-Disease Relation Extraction	RE	Bohrium	II	867
	1.2	Gene-Disease Relation Extraction	RE	Bohrium	п	203
	L2	Detailed Understanding	MCQ	LibreTexts	Ι	828
		Text Summary	GEN	LibreTexts	Ι	1,291
		Hypothesis Verification	T/F	LibreTexts	Ι	619
		Reasoning and Interpretation	MCQ	LibreTexts	I	647
		Solubility Prediction	MCQ	PEER, DeepSol	III	201
		β -lactamase Activity Prediction	MCQ	PEER, Envision	III	209
D' 1		Fluorescence Prediction	MCQ	PEER, Sarkisyan's	III	205
Biology	L3	GB1 Fitness Prediction	MCQ	PEER, FLIP	III	201
		Stability Prediction	MCO	PEER, Rocklin's	III	203
		Protein-Protein Interaction	мсо	STRING, SHS27K, SHS148K	III	205
		Biological Calculation	MCO	MedMCOA, SciEval, MMLU	п	60
		Biological Harmful OA	GEN	Self-generated	Ι	297
	L4	Proteotoxicity Prediction	MCO, T/F	UniProtKB	Ш	510
		Biological Laboratory Safety Test	MCO, T/F	LabExam (ZJU)	П	194
		Biological Protocol Procedure Design	GEN	Protocol Journal	Ι	591
		Biological Protocol Reagent Design	GEN	Protocol Journal	Ι	565
	L5	Protein Captioning	GEN	UniProtKB	Ш	937
		Protein Design	GEN	UniProtKB	Ш	860
		Single Cell Analysis	GEN	SHARE-seq	Ш	300
		Molecular Name Conversion	MCO	PubChem	Ш	1.008
	L1	Molecular Property Identification	MCO T/F	MoleculeNet	ш	1,625
		Chemical Literature OA	MCO	Literature Corpus	I	6.316
		Reaction Mechanism Inference	MCO	LibreTexts	I	269
		Compound Identification and Properties	MCO	LibreTexts	ī	497
		Doning Extraction	RE	NERRE	п	821
	L2	Detailed Understanding	MCO	LibreTexts	I	626
		Text Summary	GEN	LibreTexts	î	692
		Hypothesis Verification	T/F	LibreTexts	Ť	544
		Reasoning and Interpretation	MCO	LibreTexts	Ť	516
		Molar Weight Calculation	MCQ	PubChem	m	1.042
		Molecular Property Calculation	MCO	MoleculeNet	П	740
Chemistry		Molecular Structure Prediction	MCO	PubChem	ш	608
	13	Reaction Prediction	MCQ	USPTO-Mixed	п	1 122
	100	Retrosynthesis	MCQ	USPTO-50k	п	1,122
		Balancing Chemical Equation	GEN	WebOC	m	535
		Chemical Calculation	MCO	XieZhi SciEval MMLU	п	269
	<u> </u>	Chemical Harmful OA	GEN	Proposition-65 ILO	 	454
	14	Molecular Toxicity Prediction	MCO T/F	Toyric	ш	870
	1.4	Chemical Laboratory Safety Test	MCQ, I/F	LabExam (ZIII)	п	521
		Molecular Captioning	GEN	ChEBL 20	п	042
		Molecular Capitoning	GEN	ChEDI-20 ChEDI 20	11	943
	L5	Chaminal Protocol Proceeding D	GEN	CREBI-20	1	897
		Chemical Protocol Procedure Design	GEN	Protocol Journal	1	74
		Chemical Protocol Reagent Design	GEN	Protocol Journal	1	129

- E

Evaluation Tasks and Dataset Statistics

Zero-shot performance of LLMs on SciKnowEval

Madala			Biology Chemistry Overall Rank	Chemistry									
Models	L1	L2	L3	L4	L5	All	L1	L2	L3	L4	L5	All	Rank
GPT-40	2.00	2.25	6.00	4.00	1.20	3.28	1.00	2.29	4.00	7.00	3.75	3.46	1
Gemini1.5-Pro	4.50	5.12	6.14	2.67	6.60	5.36	2.67	4.00	3.57	1.33	11.75	4.67	2
GPT-4-Turbo	4.00	5.50	7.86	3.33	4.00	5.48	3.00	1.57	7.29	4.67	7.75	4.83	3
Claude3-Sonnet	5.50	4.12	8.43	4.00	2.00	5.00	6.00	4.43	7.86	8.00	6.00	6.33	4
GPT-3.5-Turbo	<u>2.50</u>	7.62	11.86	4.67	7.60	8.04	9.00	7.86	8.29	7.00	8.00	8.04	5
Llama3-8B-Inst	8.50	5.50	11.71	7.67	10.80	8.80	6.00	6.29	8.57	7.33	14.25	8.38	6
Qwen1.5-14B-Chat	5.50	10.38	8.71	9.00	8.40	8.96	9.33	7.14	6.43	8.00	10.50	7.88	7
Qwen1.5-7B-Chat	9.00	10.50	13.71	8.00	10.60	11.00	10.67	9.86	9.29	11.67	13.50	10.62	10
ChatGLM3-6B	12.00	14.25	11.43	10.00	12.00	12.32	15.33	15.00	15.00	12.33	12.75	14.33	12
Gemma1.1-7B-Inst	16.00	16.75	11.71	14.67	12.80	14.24	17.00	15.86	12.57	11.00	7.25	13.00	14
Llama2-13B-Chat	19.00	11.38	17.14	10.67	10.60	13.36	18.67	13.86	15.57	10.33	14.00	14.54	15
Mistral-7B-Inst	11.00	13.12	14.71	12.67	18.20	14.30	14.33	14.14	15.29	7.33	19.00	14.46	16
ChemDFM-13B	6.50	11.12	12.00	9.67	12.40	11.08	6.67	9.43	8.29	8.33	1.75	7.33	8
ChemLLM-20B-Chat	12.50	6.62	10.14	14.67	13.00	10.32	10.00	7.71	11.00	16.33	4.00	9.42	9
MolInst-Llama3-8B	13.50	9.88	7.86	12.00	18.20	11.52	9.33	9.57	7.43	9.33	17.75	10.25	11
Galactica-30B	11.00	13.75	8.43	16.67	16.80	13.00	7.67	16.43	13.00	16.67	16.00	14.29	13
SciGLM-6B	16.00	14.12	11.43	16.00	16.60	14.24	16.00	15.29	13.14	17.67	15.25	15.04	17
ChemLLM-7B-Chat	15.00	15.88	13.86	14.33	16.60	15.20	15.33	14.86	15.43	16.00	7.75	14.04	18
Galactica-6.7B	17.50	16.50	11.86	18.00	19.20	16.00	13.00	17.86	13.00	13.00	18.50	15.33	19
LlaSMol-Mistral-7B	19.50	16.75	14.14	19.67	17.20	16.68	19.33	18.71	16.29	20.00	1.25	15.33	20

Outline


	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		٨	0						
	VDSPQERASLDEN		α-hel	ix -β-sheet			2	•	<ul> <li>Protein L</li> <li>Protei</li> <li>specia</li> </ul>	LN <b>n v</b> I to
P	rimary Structure		Seco	ndarv	Teritary	Quaternary	7		specia	
()	mino acid socuones		C C	iliaar y	Citituty	Quaternary	, ,	i i i	<ul> <li>Archit</li> </ul>	ect
(A	annio aciu sequence	:)	Stru	cture	Structure	e Structure				
							Onen	- i i	Transfe	orr
	Model	Time	<b>#</b> Parameters	Base model	<b>Pretraining Dataset</b>	Capability	source			
						0	bource	- i	<ul> <li>Sizes:</li> </ul>	10
	ESM-1b [281]	2020.02	650M	RoBERTa	UniRef50	Secondary struct. pred.,	$\checkmark$	1	<b>.</b> .	
						Secondary struct pred			<ul> <li>Datase</li> </ul>	ets
	ESM-MSA-1b [277]	2021.02	100M	ESM-1b	UniRef50	Contact pred., etc.	$\checkmark$	i i		
	ESM-1v [238]	2021.02	650M	ESM-1b	UniRef90	Mutation effect pred.	$\checkmark$		Alphał	-01
	ProtTrans [87]	2021.07	-	BERT, Albert,	UniRef BED	Secondary struct. pred.,	./		-	c
	riotitalis [0/]	2021.07		Electra		Func. pred., etc	v	1	<ul> <li>Iasks:</li> </ul>	tu
	PMLM [122]	2021.07	87M - 731M	Trans. enc.	Uniref50/Pfam	Contact pred.	×			
	Mansoor et al. [229]	2021.09	100M	ESM-1D	- Lin:Def00	Mutation effect pred.	×		protei	n-r
	IM CVD [251]	2022.02	161/1	BERI Trans and	Unikei90	Func. pred.	~	1	I	. ''
Encoder-only	DSA [225]	2022.04	-	FSM-1b	-	Func. pred.	~		mutati	ion
	OntoProtein [403]	2022.03	-	BFRT	ProteinKG25	Func. pred.	1			
	ESM-2 [195]	2022.00	8M - 15B	RoBERTa	UniRef50	Func pred Struct pred	1	i i i	seque	nce
	PromptProtein [354]	2023.02	650M	RoBERTa	UniRef50, PDB	Func. pred.	1		Jeque	
	KeAP [428]	2023.02	-	RoBERTa	ProteinKG25	Func. pred.	1		inverse	e fr
	ProtFlash [339]	2023.10	79M/174M	Trans. enc	UniRef50	Func. pred.	$\checkmark$		invers.	
	ESM-GearNet [416]	2023.10	-	ESM-1b, GearNet		Func. pred.	$\checkmark$			
	SaProt [312]	2023.10	650M	BERT	-	Mutation effect pred.	$\checkmark$			
	ProteinNPT [248]	2023.12	-	Trans. enc.	-	Fitness pred., Redesign	×			
	Outeiral et al. [254]	2024.02	10M - 5B	Trans. enc.	European Nucleotide Archive	Protein represent learning	$\checkmark$		Fold2Seq [40]	2021
	ESM All-Atom [422]	2024.06	35M	RoBERTa	AlphaFold DB	Unified Molecular Modeling	×		MSA2Prot [273]	2022
	KnowRLM [349]	2024.06	-	Trans. enc.	-	Protein Directed Evolution	×		Sgarbossa et al. [295]	2023
	ESM3 [121]	2024.06	98B	RoBERTa	PDB	Seq. pred., Func. pred., Struct. pred.	. 🗸	_	Lee et al. [178]	2023
	ProGen [226]	2020.03	1.2B	GPT	Uniparc SWISS-Prot	Functional prot. gen.	$\checkmark$	Encoder-Decoder	MSA-Augmenter [402] ProstT5 [125]	2023 2023 2023
	ProtGPT2 [99]	2021.01	738M	GPT	Uniref50	De novo protein design and engineering	$\checkmark$		xTrimoPGLM [44]	2023
	ZymCTRL [241]	2022.01	738M	GPT	BRENDA	Functional enzymes gen.	$\checkmark$		SS-pI M [204]	2023
Decoder-only	RITA [128]	2022.05	1.2B	GPT	UniRef100	Functional prot. gen.	×		nAbT5 [62]	2023
	IgLM [302]	2022.12	13M	GPT	-	Antibody design	$\checkmark$		ESM-GearNet-	2020
	ProGen2 [245]	2023.10	151M - 6.4B	GPT	Uniref90, BFD30, PDB	Functional prot. gen.	$\checkmark$		INR-MC [179]	2024
	ProteinRL [309]	2023.10	764M	GPT	-	Prot. design	×			
	PoET [9]	2023.11	201M	GPT	-	Prot. family. gen.	×		(Continued)	4
	C. Frey et al. [104]	2024.03	9.87M/1.03M	GPT	hu4D5 antibody mutant	Functional prot. gen.	×		(continued)	

# **Prot-LLM: Models**

m cm



Лs

- vocabulary: 20 amino acids in nature, okens like <BOS> and <EOS>
- tures: BERT, RoBERTa, GPT, GLM, T5, mer
- OM, 1B, 10B, 100B
- : Uniref, Pfam, SwissProt, PDB, BFD30, ldDB, ColdFoldDB
- nction prediction, family prediction, protein interaction, contact prediction, effect prediction, structure prediction, e optimization, protein de novo design, olding

	Fold2Seq [40]	2021.01	-	Transformer	_	Prot. design	1
	MSA2Prot [273]	2022.04	-	Transformer	-	Prot. gen., Variant func. pred.	×
	Sgarbossa et al. [295]	2023.02	-	MSA Transformer	-	Prot. gen.	1
	Lee et al. [178]	2023.02	150M	Transformer		Prot. design	×
Jan Davidan	LM-Design [424]	2023.02	664M	Transformer	-	Prot. design	$\checkmark$
der-Decoder	MSA-Augmenter [402]	2023.06	260M	Transformer	Uniref50	MSA gen.	$\checkmark$
	ProstT5 [125]	2023.07	3B	T5	PDB	Seqstruct. translation	~
	xTrimoPGLM [44]	2023.07	100B	GLM	Uniref90, ColdFoldDB	Prot. gen., Func. pred.	×
	SS-pLM [294]	2023.08	14.8M	Transformer	Uniref50	Prot. gen.	×
	pAbT5 [62]	2023.10	-	T5	_	Prot. design	×
	ESM-GearNet- INR-MC [179]	2024.04	-	Transformer	Swiss-Prot, AlphaFoldDB	Prot. gen	×

51

# **Prot-LLM: Encoder-only**

www.biorxiv.org/content/10.1101/2021.07.09.450648v2, 2021



Multi-level Protein Structure Pre-training with Prompt Learning, ICLR, 2022



# **Prot-LLM: Decoder-only**





ProGen: Large language models generate functional protein sequences across diverse families, Nature Biotechnology, 2023

# **Prot-LLM: Encoder-decoder**





xTrimoPGLM: Unified 100B-Scale Pre-trained Transformer for Deciphering the Language of Protein, https://arxiv.org/pdf/2401.06199, 2024

#### **Prot-LLM: Datasets**



#### Table 6. Summary of datasets for Prot-LLMs

	Dataset	Last updated	Scale	Keywords
	UniRef100 [315, 316] UniRef90 [315, 316] UniRef50 [315, 316]	2023.11	314M 150M 53M	Complete collection of protein sequences from UniProtKB Cluster UniRef100 sequences at 90% sequence identity level Cluster UniRef100 sequences at 50% sequence identity level
Pretraining	UniProtKB/Swiss-Prot [29] UniProtKB/TrEMBL [240]	2023.11	570K 251M	High-quality, manually curated protein sequence database Computationally annotated protein sequence database
	UniParc [69] Pfam [100] BFD [157, 306, 307]	2023.11 2023.09 2021.07	632M 47M 2.5B	Comprehensive and non-redundant protein sequence database Protein family database Protein sequences from multiple databases and resources
	PDB [364] AlphaFoldDB [157, 334]	2023.12 2021.11	214K 200M	Experimentally determined accurate protein structures Protein structures predicted by AlphaFold
Benchmark	CASP [171] EC [236] GO [8] CATH [252] HIPPIE [288] SCOP [214] ProteinGym [247] FLIP [75] PEER [377] TAPE [276]	2022.01 2023.11 2023.02 2022.04 2023.01 2022.12 2022.01 2022.11 2022.11	2.6 M 1.5M 151M 39K 914K ~ 300K ~ 320K ~ 390K ~ 120K	Structure prediction competition Enzymes classification database Gene Ontology knowledgebase Classification of protein structures Protein-protein interaction networks Protein structure classification Predict the effects of protein mutations Fitness landscape prediction (AAV, Thermostability, GB1) Protein function, Localization, Structure prediction, Protein-protein interaction, Protein-ligand interaction Remote homology detection, Secondary structure, Contact, Fluorescence, Stability prediction
	Reactome [144] STRING [317] BioGRID [253] InterPro [258]	2023.12 2022.11 2023.12 2024.01	~ 3M 59.3M 271k ~ 41k	Biological interactions and pathways Protein-Protein interaction networks Genetic and protein interactions Classification of protein families



#### **Evaluation Metric**

- Novelty: the fraction of the generated proteins that are not present in the training set
- Frechet Protein Distance: the similarity between a set of generated proteins (G) and a reference set (R)

 $FPD = ||\mu_G - \mu_R||^2 + Tr(\Sigma_G + \Sigma_R - 2\sqrt{\Sigma_G \Sigma_R})$ 

- **Diversity**: analyzing the variety of the generated proteins against known protein databases with BLAST, metrics such as sequence similarity, percentage of unique sequences, and alignment scores
- Foldability: the average per-residue confidence score, denoted as pLDDT, across the entire protein sequence, being an indicator of the model's confidence in its predictions for individual residues
- Recovery: the success or accuracy in predicting the correct amino acid sequence that corresponds to a
  given 3D structure. A high recovery rate indicates that the designed sequences are likely to fold the desired
  structures.

# Outline







# **Sci-LLM: Summary**





#### Perspective

- Training Data:
  - Scale of Pre-training Datasets
  - Quality of Finetuning Datasets
  - Lack of Cross-modal Datasets
- Model Evaluation:
  - Computational vs wet-lab

- Architectures and Learning Objectives:
  - Handling Longer Sequences
  - Incorporating 3D Structural Information
  - Autoregressive Learning Objective
- Security and Ethics:
  - Data Privacy, Model Bias, Equal Access

# **Relevant Materials**



- Accompanying survey of this tutorial:
  - o Scientific Large Language Models: A Survey on Biological & Chemical Domains,
  - https://arxiv.org/pdf/2401.14656
  - Github Repository: <a href="https://github.com/HICAI-ZJU/Scientific-LLM-Survey">https://github.com/HICAI-ZJU/Scientific-LLM-Survey</a>
- Surveys for related topics:
  - o Comprehensive
    - Artificial Intelligence for Science in Quantum, Atomistic, and Continuum Systems, https://arxiv.org/pdf/2307.08423
    - A Comprehensive Survey of Scientific Large Language Models and Their Applications in Scientific Discovery, https://arxiv.org/abs/2406.10833
  - o Chemical molecules
    - MolGenSurvey: A systematic survey in machine learning models for molecule design, https://arxiv.org/abs/2203.14500
    - A Systematic Survey of Chemical Pre-trained Models, <u>https://www.ijcai.org/proceedings/2023/0760.pdf</u>
  - $\circ$  Biological proteins
    - Learning the protein language: Evolution, structure, and function, https://www.cell.com/cell-systems/pdf/S2405-4712(21)00203-9.pdf
    - Protein language models and structure prediction: Connection and progression, https://arxiv.org/pdf/2211.16742
    - Learning functional properties of proteins with language models, https://www.nature.com/articles/s42256-022-00457-9





Resources Available

# **Thank You!**

# Dr. Qiang Zhang

qiang.zhang.cs@zju.edu.cn



# Part III: Integrating KGs and LLMs for Scientific Applications

Zaiqiao Meng zaiqiao.meng@glasgow.ac.uk

Tutorial at Learning on Graph Conference (LoG) 26th November, 2024



# **About Me**



#### Dr. Zaiqiao Meng

☆ https://mengzaiqiao.github.io/
 ⊠ Zaiqiao.Meng@glasgow.ac.uk
 ☆ https://www.ai4biomed.org

- UK Lecturer (Assistant Professor) at the School of Computing Science,
   University of Glasgow (2022.01 now)
- Postdoctoral Researcher at the Language Technology Lab (LTL) of the University of Cambridge (2020.07 – 2022.01)
- Postdoctoral Researcher at the IR Group of the University of Glasgow (2019.03 – 2020.07)
- > Ph.D. degree in Computer Science from **Sun Yat-sen University** (2018)



# **Research Topic**

- Al for BioMedicine
- Information Retrieval
- Knowledge Graphs
- Large Language Models
- LLM-based Agents
- Al for Scientific Discovery

### Outline





**KG Integration for Scientific Prediction Tasks** 



### Outline

Knowledge Incorporation Frameworks
 KG Integration for Scientific NLP Tasks
 KG Integration for Scientific Prediction Tasks



# **KG-enhanced LLMs**



Unifying Large Language Models and Knowledge Graphs: A Roadmap. (2024) Link

**KG-enhanced LLMs,** which incorporate KGs during different phases of LLMs, or for the purpose of enhancing understanding of the knowledge learned by LLMs;

- Knowledge aware pretraining
- Knowledge integration finetuning

KGs

- **Knowledge editing**
- Knowledge unlearning

# Categorization over different stages

 Integrating scientific knowledge can occur at any stage in the development of LLMs



# Bi-Encoder vs. Cross-Encoder



**Bi-Encoder:** Efficient encoding of individual entities can speed up retrieval and computation, but may sacrifice finer-grained interactions between different encoders. **High efficiency.** 

**Cross-Encoder:** Encodes entities jointly, capturing more detailed interactions, but at the cost of greater computational resources and time. **High effectiveness.** 

# **Bi-Encoder for Drug-Target Prediction**



**FusionDTI** uses a token-level fusion module to effectively learn fine-grained information for drug-target interaction.

FusionDTI: Fine-grained Binding Discovery with Token-level Fusion for Drug-Target Interaction. Link

# Cross-Encoder for molecular property prediction

#### MolXPT: Wrapping Molecules with Text for Generative Pre-training



- A unified language model of text and molecules pre-trained on SMILES (a sequence representation of molecules) wrapped by text
- Text and SMILES are tokenized separately (molecular are encoded)

# Integration Techniques of LLMs



#### **Parameter-Efficient Fine-Tuning (PEFT):**

Techniques like Adapters, Prefix Tuning, LoRA, Diff Pruning, BitFit or Prompt-tuning that fine-tune only a small subset of model parameters, reducing computational costs while maintaining performance.



Revisiting Parameter-Efficient Tuning: Are We Really There Yet? (EMNLP 2022) Link

# Knowledge Editing



LLMs notoriously hallucinate, perpetuate bias, and factually decay, so we should be able to adjust specific behaviors of pre-trained models.

Easyedit: An easy-to-use knowledge editing framework for large language models: https://github.com/zjunlp/EasyEdit

Comparison of different technologies

### Outline

Knowledge Incorporation Frameworks





1

2

## **KG Integration for Scientific Prediction Tasks**


# KG Integration for Scientific NLP Tasks



- Question Answering [5]
- Entity Linking [4]
- Document Classification [5]
- Summarisation/Note Generation [14]
- Hypothesis Generation [15]
- Knowledge Graph Construction and Completion [1]
- Reasoning [12, 15]

### KG Integration for Clinical Text Data Generation



**CLINGEN** is a knowledge-informed framework for clinical data generation. This two-step methodology harnesses the emergent capabilities of LLMs and external knowledge from KGs to facilitate the synthesis of clinical data, even with few-shot examples only.

Knowledge-Infused Prompting: Assessing and Advancing Clinical Text Data Generation with Large Language Models. (ACL 2024) Link

# KG Integration for QA Tasks





#### **Question Answering (QA) KG: Heterogeneous** (primeKG)

KGAREVION a KG-based LLM agent for complex medical QA that leverages noncodified knowledge of LLMs and structured, codified knowledge of medical concepts within KGs.



Knowledge Graph Based Agent for Complex, Knowledge-Intensive QA in Medicine. (2024) Link

# KG Integration for QA Tasks



Efficient Knowledge Infusion via KG-LLM Alignment. (ACL 2024) Link

#### **Question Answering (QA)**

The Enhanced LLM with Knowledge Pre-learning and Feedback (ELPF) framework can be divided into four main stages.

 1) Efficient construction of domain KGs
2) Pre-learning with K-LoRA
3) SFT with KG retrieval
4) AKGF: KG acts as an evaluator

post-train+fine-tune

LORA *

### RAG for Biological Question Reasoning

 BIORAG adaptively select knowledge source and domain-specific tools to advance the biology question-reasoning task.



Inference

BIORAG: A RAG-LLM Framework for Biological Question Reasoning, Arxiv 2024

# Dealing with large scale knowledge graphs



- Partitioning it into smaller sub-graphs, e.g. METIS
- Infusing their specific knowledge into LLMs using lightweight adapters



#### Outline

Knowledge Incorporation Frameworks
KG Integration for Scientific NLP Tasks



**KG Integration for Scientific Prediction Tasks** 



## KG Integration for Scientific Prediction Tasks



Gene-Disease Association (GDA) [19] Protein Function Prediction [18] Drug Repurposing [18] Drug-Target Interaction (DTI) [8,17] Text2Mol [3] Amino acid contact prediction

•••

A Comprehensive Survey of Scientific Large Language Models and Their Applications in Scientific Discovery, Arxiv 2024

# Gene-Disease Association (GDA)



**FusionGDA** utilises bi-encoder with a fusion module to enrich the gene and disease semantic representations encoded by PLMs.

KG: Heterogeneous GDA Encoder method: Bi-Encoder

post-train + fine-tune

Heterogeneous biomedical entity representation learning for gene–disease association prediction. Briefings in Bioinformatics (2024) Link

## **Protein Function Prediction**



1. **OntoProtein** constructs a novel large-scale knowledge graph that consists of GO (Gene Ontology) and its related proteins, and gene annotation texts or protein sequences describe all nodes in the graph.

2. This KG was integrated by a novel contrastive learning with knowledge-aware negative sampling to jointly optimize the knowledge graph and protein embedding during pre-training

Ontoprotein: Protein pretraining with gene ontology embedding.(ICLR 2022) Link

## Amino acid contact prediction



- KeAP is trained on a knowledge graph that consists of about five million triplets from ProteinKG25
- KeAP explores knowledge graphs at a more granular level by applying cross-attention to sequences of amino acids and words from relation and attributes.
- KeAP can be trained using the MLM objective only (both contrastive loss and MLM are used in OntoProtein)

# Drug repurposing



b a Top 10 drug repurposing candidates in frequency Prompt: Please provide a list of the 20 most promising drugs for Hypothesis testing using clinical datasets repurposing in the treatment of Alzheimer's disease based on their VANDERBILT 💱 UNIVERSITY potential efficacy, and indicate the diseases they were originally AllofUs developed to treat. Please rank them in descending order of MEDICAL CENTER RESEARCH PROGRAM potential effectiveness and use the JSON format to include the 'Drug" and "Disease" keys Case: Drug exposure Case: Drug exposure or no Control: No drug exposur Control: No drug exposure EHR Histor 65 AD disgnosis Prompt: Please check if the generated list meets the requirement: 1) exclude the drugs that were originally designed for Alzheimer's disease, 2) 20 distinct drugs, 3) in JSON format, and 4) rank in descending order according to the potential effectiveness. If not, please regenerate the list that meets the requirement. \$ Survival Analysis Meta-Analysis

**TxGNN**, a graph foundation model for zero-shot drug repurposing, identifying therapeutic candidates even for diseases with limited treatment options or no existing drugs. Trained on a medical knowledge graph, TxGNN uses a **graph neural network** and **metric learning module** to rank drugs as potential indications and contraindications for 17,080 diseases.

**a** Employing iterative queries of ChatGPT to recommend twenty drugs for AD repurposing.

**b** Evaluating the potential efficacy of the ten most frequently suggested drugs using electronic health records (EHR) data from two large clinical databases.

Leveraging generative AI to prioritize drug repurposing candidates for Alzheimer's disease with real-world clinical validation. **Nature, 2024** 

A foundation model for clinician-centered drug repurposing. Nature Medicine, 2024. Link

### The comparison of cross-modality methods



- 1. Multimodal contrastive learning, e.g., CLIP, learns from a combination of paired data, updating all unimodal encoders.
- 1. **ImageBind** aligns all modalities with the central modality, with only the central model frozen.
- 1. **BioBRIDGE** (ICLR 2024) learns the transformation across modalities (Bridge Module) from a multi-modal KG, keeping all FMs frozen.

Imagebind: One embedding space to bind them all. (CVPR 2023) <u>Link</u> Biobridge: Bridging biomedical foundation models via knowledge graph.(ICLR 2024) <u>Link</u>

#### Scientific Discovery Agent: Unifying Scientific NLP and Predictions



Large Language Models in Drug Discovery and Development: From Disease Mechanisms to Clinical Trials, link

#### Multiple Agents with KGs for Scientific Discovery



SciAgents: Automating scientific discovery through multi-agent intelligent graph reasoning, link

### Coscientist: Chemistry - Unifying Physical World



Autonomous chemical research with large language models, Nature, 2023

### Summary

#### Part I: KG Definitions and Core Concepts

- >Introduction to KGs: why we need to integrate KG into LLMs?
- **>**A Simple Case of KGs: Ecotoxicological Effect Assessment
- **KGs in Life Sciences: Challenges and Opportunities**

#### Part II: Scientific Large Language Models (LLMs)

- **>**Overview of Scientific LLMs: Bi-encoder, Cross-encoders
- Challenges and Perspectives

#### Part III: Integrating KGs and LLMs for Scientific Applications

- Knowledge Incorporation Frameworks
- **KG Integration for Scientific NLP Tasks**
- **KG Integration for Scientific Prediction Tasks**

### Take-away

#### What KG brings to LLMs?

- Enhanced Knowledge Representation
- Improved Explainability, Reasoning and Inference
- Increased Accuracy and Reduced Hallucination

#### How to effectively incorporate KGs into LLMs?

- Backbone Model (protein, molecular, text, visual)
- Encoder Method (bi-encoder, cross-encoder)
- Integration Stages (pretrain, post-train, fine-tune, inference)
- Integration Techniques (adapter, lora, ICL, RAG, LLM Agent)

### References

- [1] Pretrain-KGEs: Learning Knowledge Representation from Pretrained Models for Knowledge Graph Embeddings, EMNLP 2020
- [2] ERNIE: Enhanced Language Representation with Informative Entities, ACL 2019
- [3] MolXPT: Wrapping Molecules with Text for Generative Pre-training, ACL 2023
- [4] Self-Alignment Pretraining for Biomedical Entity Representations, NAACL 2021
- [5] Mixture-of-partitions: Infusing large biomedical knowledge graphs into BERT, EMNLP 2021
- [7] BioBRIDGE: Biobridge: Bridging biomedical foundation models via knowledge graph, ICLR 2024
- [8] FusionDTI: Fine-grained Binding Discovery with Token-level Fusion for Drug-Target Interaction, AI4Science 2024
- [9] MKRAG: Medical Knowledge Retrieval Augmented Generation for Medical Question Answering, AMIA 2024
- [10] Editing Factual Knowledge and Explanatory Ability of Medical Large Language Models CIKM 2024
- [11] KRAGEN: a knowledge graph-enhanced RAG framework for biomedical problem solving using large language models, bioinformatics
- [12] BIORAG: A RAG-LLM Framework for Biological Question Reasoning, Arxiv 2024
- [13] SaprotHub: Making Protein Modeling Accessible to All Biologists
- [14] Knowledge-Infused Prompting: Assessing and Advancing Clinical Text Data Generation with Large Language Models. (ACL 2024)
- [15] SciAgent: Tool-augmented Language Models for Scientific Reasoning
- [16] Imagebind: One embedding space to bind them all. (CVPR 2023)
- [17] Knowledge Enhanced Representation Learning for Drug Discovery (AAAI 2024). Link
- [18] Ontoprotein: Protein pretraining with gene ontology embedding.(ICLR 2022)
- [19] Heterogeneous biomedical entity representation learning for gene-disease association prediction. Briefings in Bioinformatics (2024) Link
- [20] Leveraging generative AI to prioritize drug repurposing candidates for Alzheimer's disease with real-world clinical validation, Nature

