

Ontology Embedding and Construction in the Large Language Model Era

Jiaoyan Chen

Lecturer in Department of Computer Science, University of Manchester, UK Senior Researcher (part-time) in University of Oxford, UK

Report in Southeast University, Najing, 10th January 2025

What is an ontology?

Knowledge representation of a domain (e.g., concepts/classes, instances/entities, properties, and logical relationships)

Formal, Explicit, Shared

Ontology Languages

- RDF (Resource Description Framework)
 - Triple: <Subject, Predicate, Object>
 - E.g., <Bob, hasParent, Alex>

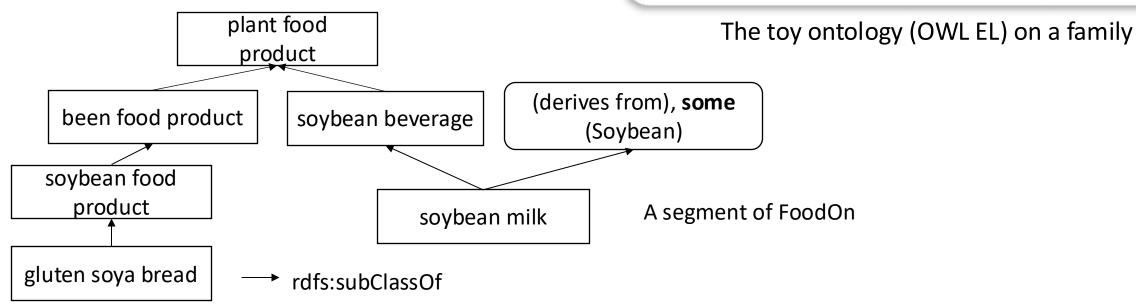
RDF Schema (RDFS)

- E.g., hierarchical concepts and properties, property domain and range
- Web Ontology Language (OWL)
 - Logical relationships (in Description Logic)
 - Taxonomies and vocabularies

Ontology Languages

OWL Ontology Example

• E.g., in Life Sciences: SNOMED Clinical Terms, The Gene Ontology (GO), the Food Ontology (FoodOn), Human Disease Ontology (DOID) ...



OWL Ontology vs Knowledge Graph

 KG: instances + relational facts (according to the definition of Google in 2012)

 OWL Ontology includes Knowledge Graph from the perspective of Knowledge Representation

Ontology Engineering

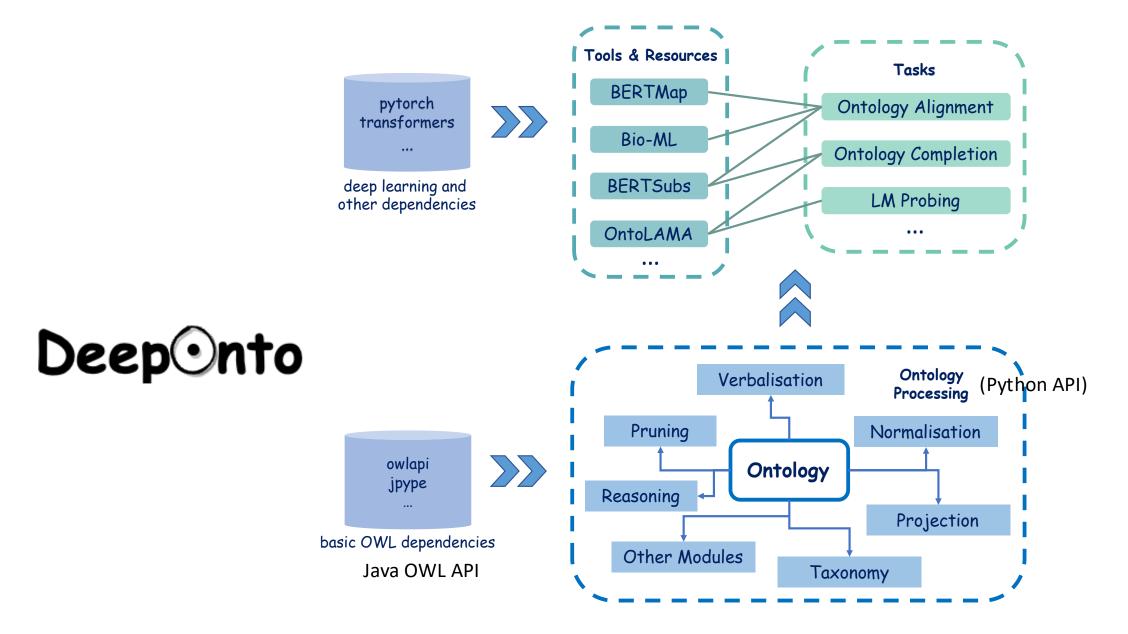
Construction and curation; highly rely on human beings now

- How to utilize Machine Learning, NLP and LLM for automation?
 - The limitation from the current ontology APIs
 - Java OWL API, Owlready 2
 - Limited Python support
 - The shortage of usable tools and resources

An LM-based Ontology Engineering Library

- Python interface for more compact interaction with deep learning libraries (call Java OWL API in the backend);
- Ontology processing APIs for fostering deep learning and NLP techniques in ontology engineering;
- Ontology engineering tools and resources implemented with our APIs, deep learning and (Large) Language Models.

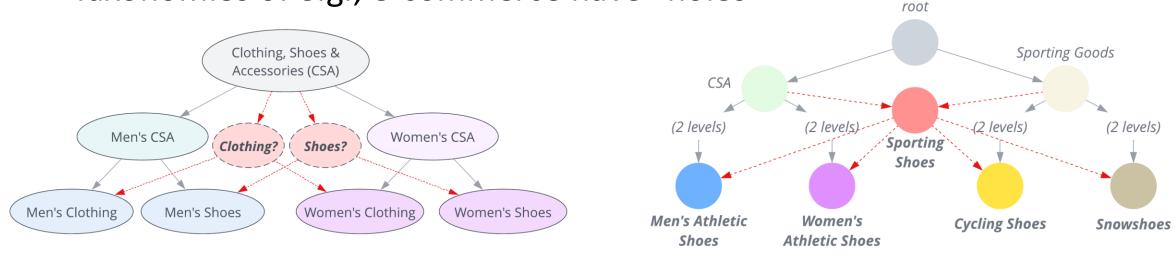
He, Y., et al. "DeepOnto: A Python package for ontology engineering with deep learning." *Semantic Web Journal (2024)*.



Several tools implemented in DeepOnto

- BERTMap: A BERT-Based Ontology Alignment System by fine-tuning pre-trained language models (PLMs) by synonyms (AAAI 2022)
- **BERTSubs: ontology subsumption prediction** by prompts for encoding concept contexts and PLM fine-tuning (World Wide Web Journal 2023)
- Machine Learning-Friendly Biomedical Datasets for Equivalence and Subsumption Ontology Matching (ISWC 2022)
- OntoLAMA: a Tool of Language Model Analysis for Ontology Subsumption Inference (Findings of the ACL 2023)
- Ontology Text Alignment: Aligning Textual Content to Terminological Axioms (ECAI 2024)
- More in our TODO list; External contributions are very welcomed

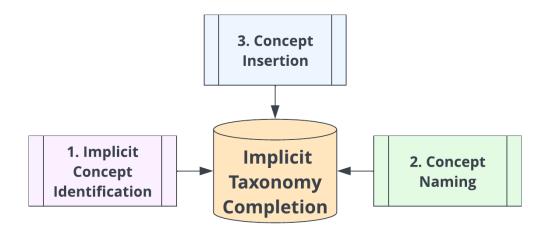
• Taxonomies of e.g., e-commerce have "holes"



Example 1: Concepts that should have existed

Example 2: Concepts bridging multiple branches of the taxonomy

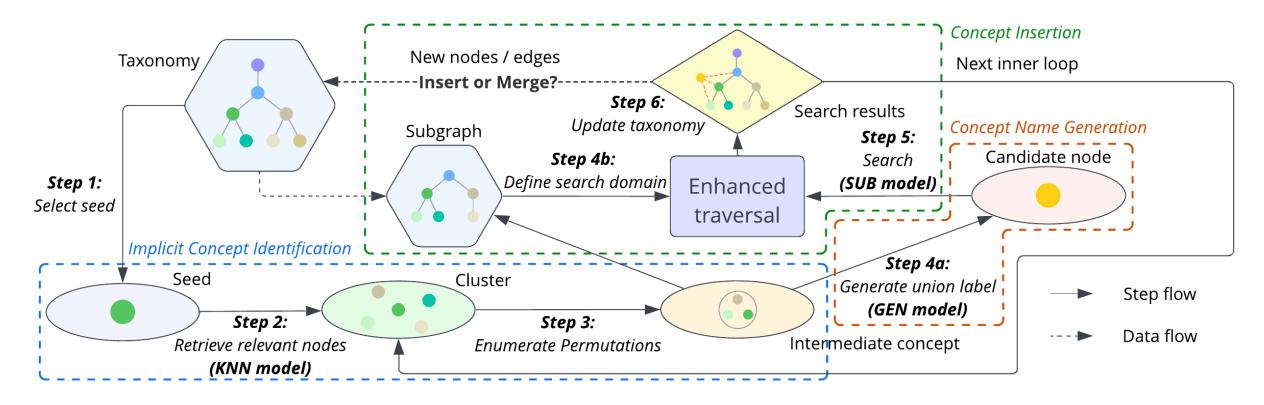
Shi, J., et al. "Taxonomy Completion via Implicit Concept Insertion." The Web Conference 2024.

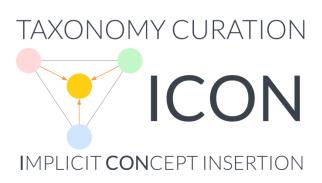


Anatomy of the task

- Identify the implicit concepts (BERT Embedding with contrastive learning from siblings + nearest neighbour search with KNN)
- **2. Generate the label** for each implicit concept (text summarisation with T5 trained with concepts + their LCA)
- Find the parents and children for each implicit concept (subsumption classification with BERT fine-tuning & traversal algorithms)

TAXONOMY CURATION





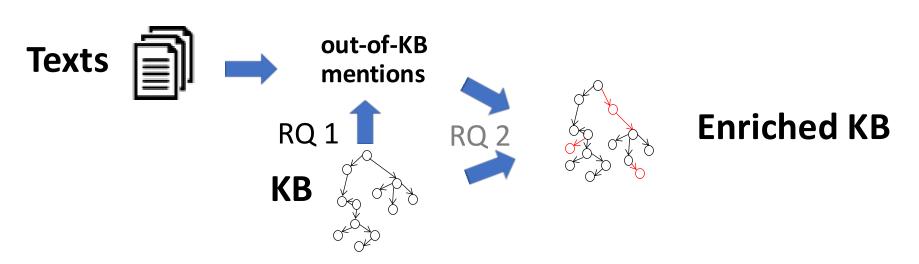
Tested on real eBay's taxonomy and AliOpenKG

 Higher precision and recall on all the three tasks, than two baselines GenTaxo++ (KDD'21) and ChatGPT

 Hard to evaluate the overall pipeline; some testing samples judged by eBay with good satisfactory

New Concepts for Ontology Completion

- RQ1: How to identify out-of-KB mentions, i.e., NIL entity uncaptured by a Knowledge Base (ontology or knowledge graph), from texts?
- RQ2: How to insert out-of-KB mentions as new entities into a Knowledge Base?



Two-step Framework

- Stage 1: Candidate generation
 - Candidates: entities and NIL for RQ1, and edges for RQ2 (insertion places of new concepts)
 - Retrieve K relevant entities (and edges for RQ2) with BM2.5 or BERT-based biencoder, trained with contrastive learning, mention and entity context encoding
 - Extension for more candidates around the matched edges for RQ2
- Stage 2: Candidate ranking
 - Classification of the candidates
 - fine-tuning an **encoder-only PLM** e.g., BERT for multi-label classification
 - a **decoder-only LLM** with prompts

Dong, H., et al. "Reveal the Unknown: Out-of-Knowledge-Base Mention Discovery with Entity Linking." *CIKM* 2023. (best resource paper runner-up)

Dong, H., et al. "A Language Model based Framework for New Concept Placement in Ontologies." ESWC 2024.

Ontology Embedding

Vector representation with the semantics concerned

- Why ontology embedding matters?
 - Ontology construction and curation
 - Domain specific applications e.g., link prediction
 - Interpretable and more effective reasoning, neural-symbolic integration
 - Consumption of ontologies e.g., RAG and knowledge-aware zero-shot learning
 - Foundation of knowledge representation and machine learning

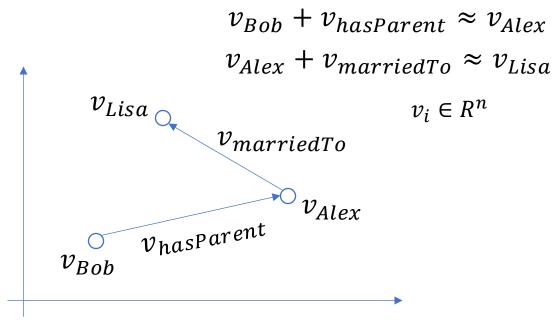
Ontology and Knowledge Graph Embedding

 To represent symbols (e.g., entities and relations) in a vector space with their relationships concerned, mainly for being consumed by statistical analysis and machine learning

Example: TransE for RDF triples

<Bob, hasParent, Alex>
<Alex, marriedTo, Lisa>
...

Learning algorithm

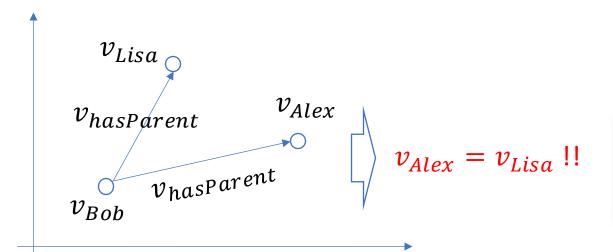


Bordes, A., et al. "Translating embeddings for modeling multi-relational data." *Advances in neural information processing systems* 26 (2013).

Ontology and Knowledge Graph Embedding

Limitations of the simple translation-based relation modeling

Cannot deal with one-to-many, many-to-one and many-to-many relations



How to embed an OWL (or RDFS) ontology like the family example? Cannot model concepts and their logical relationships

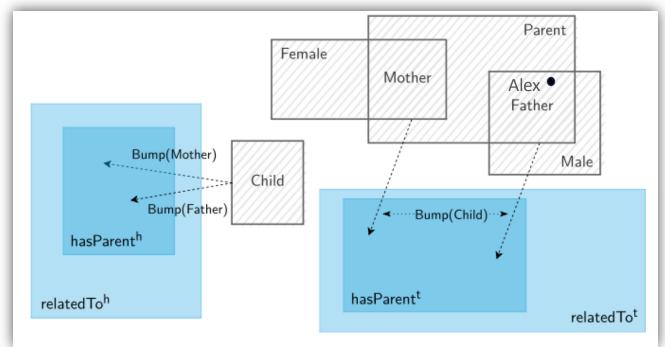
```
T = {Father □ Parent □ Male, Mother □ Parent □ Female,
        Child □ ∃hasParent.Father, Child □ ∃hasParent.Mother,
        hasParent □ relatedTo}

A = {Father(Alex), Child(Bob), hasParent(Bob, Alex)}
```

Wide research for modeling complex relations and graph patterns for embedding KGs: TransR, Complex, DistMult, ConvE, RDF2Vec ...

Embedding OWL Ontologies

Learning Algorithms



Box²EL for OWL ontologies of Description Logic \mathcal{EL}^{++} (like the family example)

Entity/instance: Point

Concept: Box (center vector & offset vector)

Relation/role: a head box & a tail box

Concept interaction: bump vector

Concept subsumption
Instance membership
Concept intersection
Role inclusion and composition

Existential quantification $C \sqsubseteq \exists r. D \colon \mathsf{Box}(\mathsf{C}) \otimes \mathsf{Bump}(\mathsf{D}) \subseteq \mathsf{Head}(\mathsf{r})$ $\mathsf{Box}(\mathsf{D}) \otimes \mathsf{Bump}(\mathsf{C}) \subseteq \mathsf{Tail}(\mathsf{r})$

Jackermeier, M., Chen, J., Horrocks, I.,"Dual Box Embeddings for the Description Logics EL++." The Web Conference 2024.

Evaluation of Ontology Embeddings

- Link Prediction
 - E.g., protein-protein interaction prediction

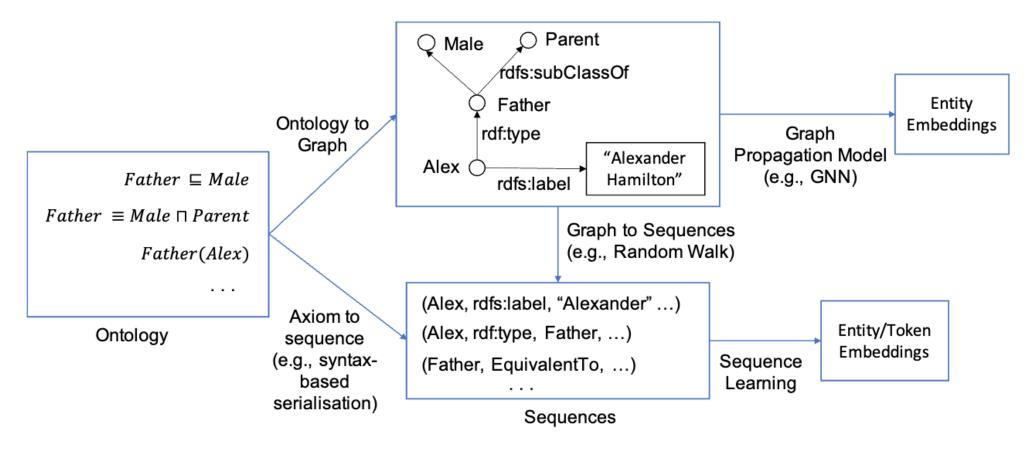
	Model	H@10	H@10 (F)	H@100	H@100 (F)	MR	MR (F)	AUC	AUC (F)
Yeast	ELEm	0.10	0.23	0.50	0.75	247	187	0.96	0.97
	EmEL++	0.08	0.17	0.48	0.65	336	291	0.94	0.95
	BoxEL	0.09	0.20	0.52	0.73	423	379	0.93	0.94
	ELBE	0.11	0.26	0.57	0.77	201	154	0.96	0.97
	Box ² EL	0.11	0.33	0.64	0.87	168	118	0.97	0.98
Human	ELEm	0.09	0.22	0.43	0.70	658	572	0.96	0.96
	EmEL ⁺⁺	0.04	0.13	0.38	0.56	772	700	0.95	0.95
	BoxEL	0.07	0.10	0.42	0.63	1574	1530	0.93	0.93
	ELBE	0.09	0.22	0.49	0.72	434	362	0.97	0.98
	Box ² EL	0.09	0.28	0.55	0.83	343	269	0.98	0.98

Results of Box²EL on protein-protein interaction prediction. the STRING database (ABox) + the Gene ontology (TBox)

Paradigms for Ontology Embedding

- Geometric modeling (like Box²EL)
 - Pros: interpretable; sound representation of formal semantics
 - Cons: hard to incorporate informal semantics like textual literals; hard to deal with all the features of OWL
- Sequence modeling
 - Transform axioms and literals into sentences;
 - Train word embedding (sequence learning) models
- Graph embedding
 - Transform axioms into a graph / taxonomy

Paradigms for Ontology Embedding

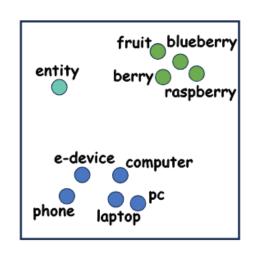


Paradigms of Sequence Learning & Graph Embedding

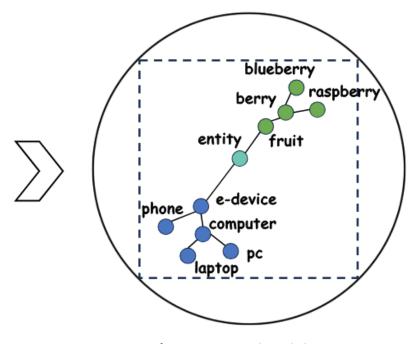
 To learn a "structure-preserving" function that maps entities in a hierarchy to a vector space.

 The vector representations of these entities should reflect their hierarchical relationships within the formal semantics and text

HiTs: re-train transformer encoderbased LMs as Hierarchy Transformer encoders, leveraging the expansive nature of hyperbolic space (Poincare ball)



Concept's Text Embedding in Euclidean Space by a Pre-trained LM



Concept's Text Embedding in Poincare' Ball Space by a PLM retrained on an ontology

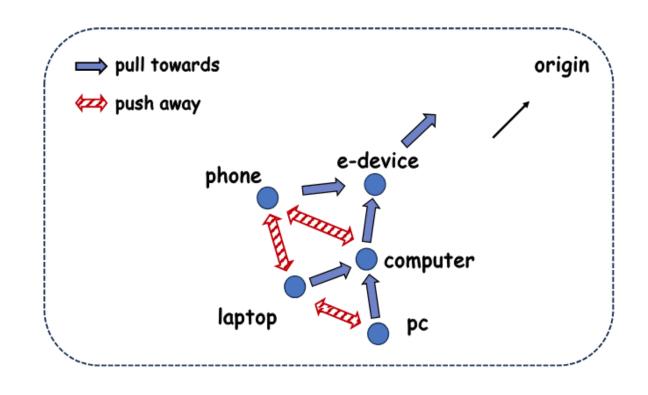
He, Yuan, et al. "Language Models as Hierarchy Encoders." NeurIPS 2024.

Hyperbolic clustering loss

 Clustering related entities while distancing unrelated ones

Hyperbolic centripetal loss

 Parent entities staying relatively closer to the manifold's origin than their children



Evaluation

- HiTs can well re-constructs the hierarchy, and show higher subsumption prediction accuracy than the original LMs
- HiTs have much higher transferability across taxonomies than fine-tuning

Discussion and Future (Ongoing) Work

 Geometric models in hyperbolic space or boxes of non-linear distance for Description Logic embedding

- Extend HiTs from Taxonomy to OWL ontology
 - Solution #1: from axioms to a taxonomy
 - Solution #2: additional losses for logical axioms

Discussion and Future (Ongoing) Work

- Ontology construction in scratch for data lakes (tables + documents)
 - Solution #1: table/column embedding + clustering
 - Solution #2: table annotation (e.g., column type) generation and prompts for hierarchy construction
- Ontology for RAG and LLM inference like QA
 - Hybrid data and knowledge (Data Lake, KG, Ontology)
 - Poisonous data/knowledge in RAG

Thanks for your attention