

The University of Manchester

Embedding Complex Knowledge: From Geometric to Language Models

Jiaoyan Chen
Department of Computer Science
The University of Manchester

第五届认知与语义计算国际研讨会 山西太原 2025年11月10号

Embedding Symbolic Knowledge

 Vector or parameter-based representation of symbolic knowledge

• Why?

- Knowledge inference with **uncertainty** (e.g., incompleteness, approximation & prediction, induction of schema & rule)
- Similarity-based **matching** across modalities (e.g., retrieval, alignment and resolution)
- Inject knowledge into parameter-based models (e.g., tuning LLM)
- Kinds of downstream applications with machine learning and statistical models

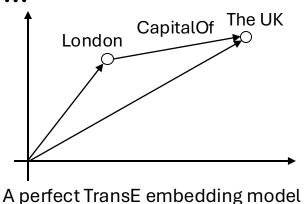
Knowledge Graph Embedding

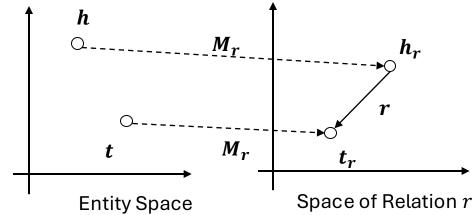
 Originate from word embeddings; mostly aim at sets of facts of RDF triples e.g., <London, CapitalOf, The UK>

• TransE, TransR, ..

RDF2Vec, Node2Vec, ...

• R-GCN, ...





TransR: map entities into the same space

 How to represent more complex ontologies of Description Logic (DL) in Euclidean space?

```
T = {Father 

Parent 

Male, Mother 

Parent 

Female,

Child 

ShasParent.Father, Child 

ShasParent.Mother,

hasParent 

relatedTo}

R = {Father(Alex), Child(Bob), hasParent(Bob, Alex)}

T = {Father(Bob, Alex)}

T = {Father(
```

- Region-based
 - Individual Point
 - Concept Ball, Box, ...
 - Relation Translation, Boxes, ...

A toy famil ontology in DL \mathcal{EL}^{++} which allows complex concept construction:

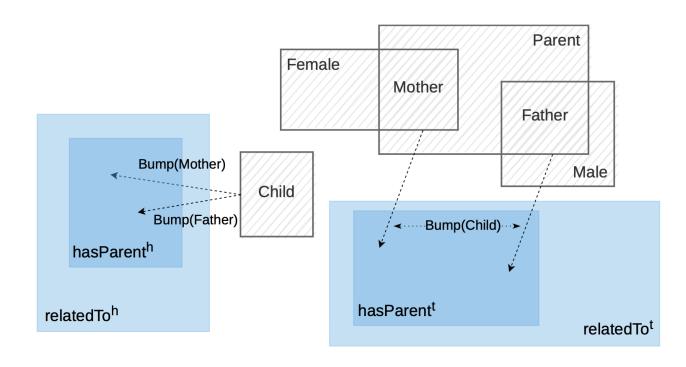
$$\bot \mid \top \mid A \mid C \sqcap D \mid \exists r. C \mid \{a\}$$

ABox can be transformed into TBox:

$$C(a) \rightsquigarrow \{a\} \sqsubseteq C$$

 $r(a,b) \rightsquigarrow \{a\} \sqsubseteq \exists r.\{b\}$

- Example: Box²EL
 - Individual: n-point
 - Concept: one n-box
 - Conjunction, subsumption, membership
 - Relation: two n-boxes (head & tail)
 - Composition, subsumption
 - Concept interaction: bumping vector
 - Existential quantification $Child \sqsubseteq \exists hasParent.Father$



Representation of the family ontology in Box²EL

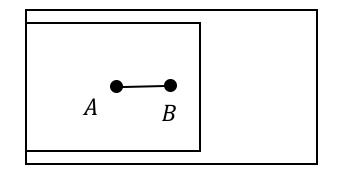
Jackermeier, Mathias, Jiaoyan Chen, and Ian Horrocks. "Dual box embeddings for the description logic EL++." *Proceedings of the ACM Web Conference 2024*. 2024.

- Box²EL training:
 - Element-wise distance of two boxes:

$$d(A,B) = |c(A) - c(B)| - o(A) - o(B)$$

• Score/loss of concept subsumption (inclusion of two boxes):

$$\mathcal{L}_{\subseteq}(A, B) = \begin{cases} \|\max\{\mathbf{0}, d(A, B) + 2o(A) - \gamma\}\| & \text{if } B \neq \emptyset \\ \max\{\mathbf{0}, o(A)_1 + 1\} & \text{otherwise,} \end{cases}$$



$$d(A,B) + 2o(A) = |c(A) - c(B)| + o(A) - o(B)$$

• Box²EL training: loess/scores for axioms of each normal form (NF)

• NF1:
$$C \sqsubseteq D$$
 $\mathcal{L}_1(C,D) = \mathcal{L}_{\subset}(\operatorname{Box}(C),\operatorname{Box}(D))$

• NF2:
$$C \sqcap D \sqsubseteq E$$
 $\mathcal{L}_2(C, D, E) = \mathcal{L}_{\subseteq} \Big(\text{Box}(C) \cap \text{Box}(D), \text{Box}(E) \Big)$

• NF3:
$$C \sqsubseteq \exists r. D$$
 $\mathcal{L}_3(C, r, D) = \frac{1}{2} \Big(\mathcal{L}_{\subseteq}(\operatorname{Box}(C) + \operatorname{Bump}(D), \operatorname{Head}(r)) + \mathcal{L}_{\subseteq}(\operatorname{Box}(D) + \operatorname{Bump}(C), \operatorname{Tail}(r)) \Big).$

• NF4:
$$\exists r \in D$$
 $\mathcal{L}_4(r,C,D) = \mathcal{L}_{\subseteq}(\operatorname{Head}(r) - \operatorname{Bump}(C),\operatorname{Box}(D))$

• NF5:
$$C \sqcap D \sqsubseteq \bot$$
 $\mathcal{L}_5(C,D) = ||\max\{0, -(d(\operatorname{Box}(C),\operatorname{Box}(D)) + \gamma)\}||$

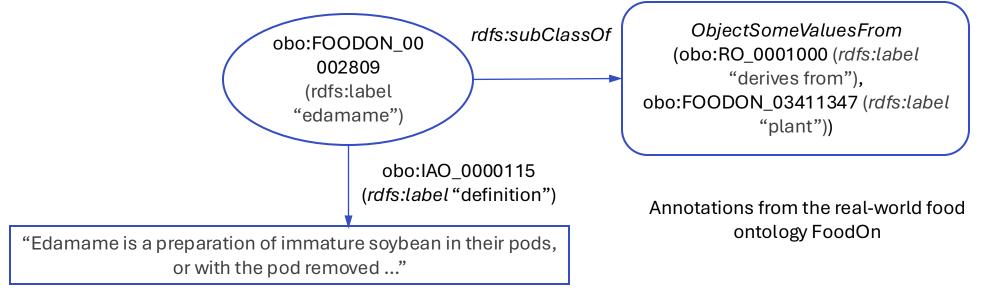
• Box²EL training: Loess for axioms of each normal form (NF)

• NF6:
$$r \sqsubseteq s$$

$$\mathcal{L}_{6}(r,s) = \frac{1}{2} \Big(\mathcal{L}_{\subseteq}(\text{Head}(r), \text{Head}(s)) + \mathcal{L}_{\subseteq}(\text{Tail}(r), \text{Tail}(s)) \Big)$$

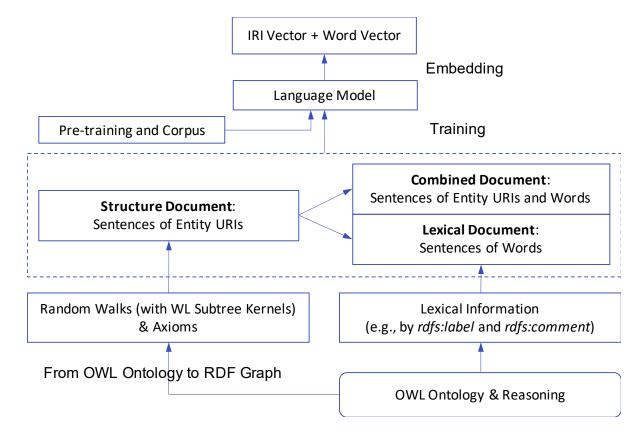
• NF7:
$$r_1 \circ r_2 \sqsubseteq s$$
 $\mathcal{L}_7(r_1, r_2, s) = \frac{1}{2} \Big(\mathcal{L}_{\subseteq}(\operatorname{Head}(r_1), \operatorname{Head}(s)) + \mathcal{L}_{\subseteq}(\operatorname{Tail}(r_2), \operatorname{Tail}(s)) \Big)$

 OWL ontology includes more than formal semantics (e.g., labels, text definitions)



 How to jointly embed the informal textual knowledge and the formally defined knowledge?

- OWL2Vec*: Train a
 Word2Vec model from an
 OWL ontology
- Corpus extraction that keep the original semantics in sentences



The framework of OWL2Vec*

Chen, Jiaoyan, et al. "OWL2Vec*: embedding of OWL ontologies." *Machine Learning* 110.7 (2021): 1813-1845.

- Transformer-based encoder language models
 - Contextual, pre-train then fine-tune
 - E.g., BERT, all-MiniLM
- Task-specific embedding
 - Fine-tune LM with additional task layer

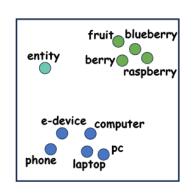
e.g.,

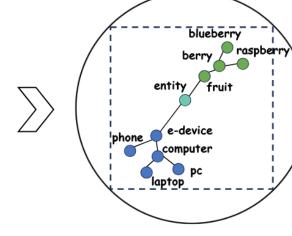
BERTMap: fine-tune with synonyms & mappings for ontology matching

BERTSubs: fine-tune with concept subsumptions

- How to preserve the logical relationships of an ontology in the LMbased text encoding?
 - None task specific
 - Support logical reasoning directly with the embeddings

- LM as hierarchy encoder (**HiT**)
 - Re-train a BERT alike LM by an ontology
 - Force the LM's concept encodings to a hierarchy in a hyperbolic space (Poincare ball)
 - Motived by its efficiency for representing hierarchies

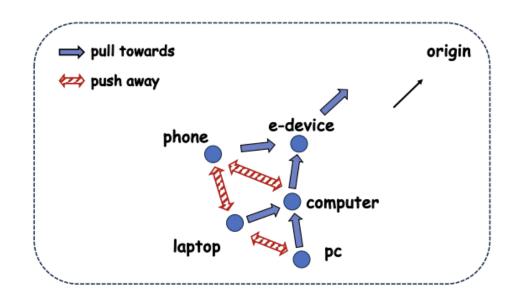




Concept's Text Embedding in Euclidean Space by an LM

Concept's Text Embedding in Poincare Ball Space by an LM re-trained on an ontology

- Training of HiT
 - Contrastive: distinguish positive and negative samples
 - Centripetal: make parent closer to origin

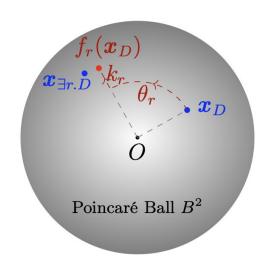


Example phone, computer, e-device

- Inference with HiT embeddings
 - Consider both contrastive and centripetal losses

$$s(e_1 \sqsubseteq e_2) = -(d_c(\mathbf{e}_1, \mathbf{e}_2) + \lambda(\|\mathbf{e}_2\|_c - \|\mathbf{e}_1\|_c))$$

- LM as \mathcal{EL}^{++} ontology encoder (**OnT**)
 - Extend HiT to complex concepts E.g., $\exists isParentOf.Person$
- Solution #1: verbalization
 - $\exists isParentOf.Person \rightarrow$ "something that is parent of some person"
 - $\exists r.D \rightarrow x_{\exists r.D}$
- Solution #2: Relation by rotation
 - $\exists r. D \rightarrow f_r(x_D)$
 - Learning: $x_{\exists r,D} < f_r(x_D), f_r(x_D) < x_{\exists r,D}$



Yang, Hui, et al. "Language Models as Ontology Encoders." The 24th International Semantic Web Conference (ISWC). 2025.

Summary

- Geometric models
 - TransE, TransR, Box²EL, ...
 - Region-based representations (box, ball, ...)
- Language models
 - Non-contextual (RDF2Vec, OWL2Vec*, ...)
 - Transformer-based
 - Encoder-based LM (HiT, OnT, BERTMap, ...)
 - Decoder-based LLM (MKGL, Pre-quantization, ...)
 - Tune LLMs using instructions of "KG language"

Chen, Jiaoyan, et al. "Ontology embedding: a survey of methods, applications and resources." *IEEE Transactions on Knowledge and Data Engineering* (2025).

Ontology in the Age of LLMs

- LLM for ontology construction
- LLM as ontology (a new paradigm of future embeddings)
 - Memorization of formal and informal knowledge
 - End-to-end, generative, complex reasoning (deductive, inductive, proving)
 - Multiple ontologies
- Ontology for LLM
 - Evaluation and mechanic interpretation (reasoning, explanation)
 - As knowledge source of RAG
 - As method for RAG (e.g., data management) and Agentic AI (e.g., resource description)

Acknowledgement

- Key contributors: Yuan He (Oxford, now in Amazon), Hui Yang (Manchester), Mathias Jackermeier (Oxford), Ian Horrocks (Oxford) ...
- Main funders: EPSRC (OntoEm & ConCur), Samsung Research UK
- Feel free to contact me
 - jiaoyan.chen@manchester.ac.uk
- Q&A